
1

Boolean Algebra and the Application of Truth Tables

Boolean Algebra applies algebra to an environment where there are only 2 values, true and false. This
may also be referred to as Binary Algebra or Logical Algebra. Common applications of Boolean Algebra
are logic gates (for work in circuitry), computer science, set theory and statistics.

The concept of Boolean Algebra was first explored by George Boole. He published two books on the
subject, The Mathematical Analysis of Logic (1847) and then later An Investigation of the Laws of
Thought (1854).

Logical statements in Boolean Algebra are often analyzed using a Truth Table. A truth table represents
all possible outcomes when performing a specific logical operation. Typically, each value to be operated
on is represented in column form with the answer being on the right side of the table.

Unary Operations are operators that operate on a single statement. An example would be the NOT
operator (One’s Complement in Computer Science). Unary operations may be represented by a truth
table with 2 columns and 2 rows, where the answer is displayed in the second column.

Binary Operations require two statements to operate. These include AND, OR, XOR, etc. Binary
operations are represented by a truth table with 3 columns and 4 rows, where the answer is displayed in
the third column.

The symbols used in mathematics to represent logical operations are not always consistent between
sources and can be difficult to represent on a computer. Instead, this text will use the word
abbreviations as shown below.

AND Yields true if all conditions are true

OR Yields true if any one condition is true

XOR (Exclusive or) Yields true if exactly one of two conditions are true

NOT Converts true to false and false to true

NOR (Not or) Yields false if any condition is true

XNOR (Exclusive not or) EXCLUSIVE NOT OR

NAND (Not and) Yields true if any condition is false

Figure 1: Common Binary Operations

The composite Unary and Binary Truth Tables below show the answers to the different operators.

 NOT

T F

F T

Figure 2: Unary Operations Truth Table

 AND OR XOR NOR XNOR NAND

T T T T F F T F

T F F T T F F T

F T F T T F F T

F F F F F T T T

2

Figure 3: Binary Operations Truth Table

Applications in Computer Science
Boolean Algebra lends well to concepts in computer science. Computers count using base 2 (binary)
notation. The smallest value in computer science is called a bit, which has only two possible values, 0 or
1. 0 is typically false and 1 is true. More precisely any number that is not zero is true. When 4 bits are
placed together, this is called a Nibble and has 16 discrete values. A Byte contains 8 bits and has 256
discrete values. Working with the individual bits is often called bitwise operations.

 Number of placeholders (Bits) Number of discrete values

Bit 1 2

Nibble 4 16

Byte 8 256

Half Word Word / 2 ???

Word ??? ???

Double Word Word * 2 ???

Figure 4: Storage Units in Computer Science

A Word is the register size for a particular processor. It will vary in length based on the architecture
used. Common values are 8, 16, 32, and 64 bits. To avoid confusion when using the term word, consider
prepending it with the size, such as XX-bit word (eg 32-bit word). It is also acceptable to say half word or
double word to indicate one half the number of bits or double the number of bits of a word.

Truth tables are also used in computer science. Traditionally, truth tables are displayed with sets of
values existing in column form (reading left to right). Often in computer science it is easier to display a
concept by representing the truth table in row form with the answer at the bottom, especially for bit
shift operations.

Bitwise operations in a program source file are not typically represented with the same symbols used
when applying Boolean Algebra to other disciplines. C and many other programing languages do not
have a single operator to express NOR, XNOR, or NAND. However, these operators may be represented
by combining others in specific patterns.

Bitwise AND & (Ampersand)

Bitwise Inclusive-OR | (OEM Pipe)

Bitwise XOR ^ (Carrot)

One’s Complement
Bitwise Not

~ (tilde)

NOR ~(a | b)

XNOR ~(a ^ b) OR a == b

NAND ~(a & b)

Left Shift << X

Right Shift >> X

Figure 5: Bitwise Operations using C language notation

In addition to the typical Boolean operators, Computer Science also uses a bitwise left shift and bitwise
right shift.

3

Binary Numbers
Binary Numbers are values represented in base-2 notation as opposed to the typical base-10 notation
(decimal). Other formats also exist such as octal and hexadecimal. The binary number 0110 represents
decimal 6.

As an example, convert the binary number 0101 into decimal form:

4th digit 3rd digit 2nd digit 1st digit Equals
0000 + 0100 + 0000 + 0001 Binary 0101
0 ^ 3 = 0 + 2 ^ 2 = 4 + 0 ^ 1 = 0 + 2 ^ 0 = 1 Decimal 5

Negative Binary Numbers
In computer science, the terms signed or unsigned indicate if a storage unit can hold negative numbers.
The term Unsigned means only positive numbers are allowed. The term Signed means either positive or
negative numbers are allowed. Signed and unsigned numbers may both store the number 0.

The most common method for representing a signed number is using Twos Complement notation. In
twos complement notation, the leftmost bit in the sequence is the sign bit. In this case, if the leftmost
bit is 1, the number is negative. If this bit is 0, the number is positive.

If the number is negative, the rest of the number is represented by its complement (opposite value). As
an example, the signed byte 1111 1111 would represent the number -1. The high order bit (furthest to
the left), represents the sign, which is negative in the case of a 1 bit. Then the remaining 7 bits when
taking the complement (~) represent 000 0000 or zero.

As an exercise, what number does 1111 1101 represent when stored in a signed byte, assuming twos
complement notation.

1. Check the highest order bit to determine sign (positive/negative). In this case 1XXX XXXX means
a negative number.

2. Because the number is negative, perform a Bitwise NOT operation on remaining digits: X111
1101 becomes X000 0010.

3. Convert the binary number into decimal notation, in this case 2 to the first power equals 2.

While twos complement is the most common method, other less common options for representing
signed numbers exist including Signed Magnitude and Ones Complement.

A signed value can effective store half the number of positive values as an unsigned bit, allocating space
for both negative and positive values.

Storage Type Unsigned Range Signed Range

Bit 0 to 1 N/A

Byte 0 to 255 -128 to 127

16-bit Word 0 to 65,536 -32,767 to 32,767

32-bit Word 0 to 4,294,967,296 -2,147,483,648 to 2,147,483,647

Figure 6: Range of values allowed (assuming Twos Complement storage for signed values)

4

Bitwise Shift Operations
Two bitwise shift operations are available, left shift (<<) and right shift (>>).

Left Shift is represented by << X, where X is the number of placeholders to shift all bits by. 0s are always
shifted into the lower order bits. Left shift effectively raises the value of the number by a power of 2
each time it is shifted. (EG << 4 would raise the number by X * 2 ^ 4.)

Right Shift is represented by >> X, where X is the number of placeholders to shift all bits by to the right.
Right shift effectively divides the value of the number by a power of 2 each time shifted. (EG >> 3 would
lower the number by X / 2 ^ 4). Which bits are shifted into the higher order bits is dependent on
whether the number is a signed or unsigned number.

For an unsigned number, a 0 will always be right-shifted in. For a signed number, if the number is
positive, 0 bits will be shifted in. For a negative number, the bit shifted in will be machine-dependent
with two typical choices, arithmetic right shift and logical right shift.

A Logical Right Shift occurs if 0s are shifted in during right shift operations on a negative value. An
Arithmetic Right Shift occurs if 1s are shifted in during right shift operations on a negative value.
Another way to look at it is arithmetic shifts preserve the sign of the number while logical shifts do not.

For an example, perform a 1010 0001 >> 2 (right shift the byte by 2)

1. Arithmetic Right Shift: 1110 1000
2. Logical Right Shift: 0010 1000

Further Reading

• Boolean Functions: http://mathworld.wolfram.com/BooleanFunction.html

• Logic Gates: https://www.electronics-tutorials.ws/boolean/bool_7.html

• Bitwise Operations in C: https://en.wikipedia.org/wiki/Bitwise_operations_in_C

• Endianness: https://betterexplained.com/articles/understanding-big-and-little-endian-byte-
order/

http://mathworld.wolfram.com/BooleanFunction.html
https://www.electronics-tutorials.ws/boolean/bool_7.html
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
https://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/

